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Abstract
Purpose This study was designed to identify strategies for
treating bone defects that can be completed on the day of
surgery.
Methods Forty New Zealand white rabbits with unilateral rab-
bit radius segmental defects (15 mm) were treated with com-
mercially available scaffolds containing either demineralised
bone matrix (DBM) or a collagen/beta-tricalcium phosphate
composite (Col:β-TCP); each scaffold was combined with
either bone marrow aspirate (BMA) or concentrated BMA
(cBMA). Bone regeneration was assessed through radio-
graphic and histological analyses.
Results The concentration of nucleated cells, colony-forming
unit-fibroblasts and platelets were increased and haematocrit
concentration decreased in cBMA as compared to BMA
(p<0.05). Radiographic analyses of bone formation and de-
fect bridging demonstrated significantly greater bone regener-
ation in the defects treated with DBM grafts as compared to
Col:β-TCP grafts. The healing of bones treated with Col:β-
TCP was improved when augmented with cBMA.
Conclusions Scaffolds containing either DBM or Col:β-TCP
with BMA or cBMA are effective same-day strategies

available to clinicians for the treatment of bone defects; the
latter scaffold may bemore effective if combined with cBMA.
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Introduction

The complications associated with impaired bone healing
have been well documented [1]. The current gold standard
to overcome deficiencies in bone healing is the use of auto-
graft [2]. Significant advances have been made in the field of
bone tissue engineering with the goal of replacing the use of
autogenous bone grafts to avoid the negative effects associat-
ed with them. For example, biomaterials, cells and growth
factors are manipulated to create tissue-engineered constructs
that have both significantly improved our understanding of
regenerating bone and demonstrated the potential of regener-
ative medicine (for review see [3–5]). Although these ad-
vances may result in ideal bone healing in the future, it is
important for clinicians to be aware of bone healing alterna-
tives to autograft that are currently at their disposal.

Among the tissue-engineering strategies being developed,
those using either demineralised bone matrix (DBM) or beta-
tricalcium phosphate (β-TCP) have been extensively explored
[6–12]. Given the strong foundation supporting their effec-
tiveness and regulatory status it is not surprising that scaffolds
incorporating these materials are commercially available. Ex-
perimental investigations to improve their use are ongoing
[8–11]; however, the overall objective of the vast majority of
studies is to develop or optimise materials that have not yet
received regulatory approval. Stem cell-based strategies, es-
pecially those using bone marrow aspirate (BMA), have been
investigated to minimise the use of autograft [13, 14]. The
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means to concentrate a relatively less pure, heterogeneous
mixture of cells from BMA is also being used in preclinical
studies and is commercially available [8, 15]. Similar to the
development of biomaterials, much of the research effort is
directed towards the advancement of novel stem cell-based
strategies rather than improving upon the use of approved
methodologies. Collectively, the accessibility of both com-
mercially available scaffolds and devices capable of enriching
BMA supports the use of same-day strategies to improve the
healing of bone defects.

Due to the paucity of experimental studies using clinically
relevant, same-day strategies, the tools that are currently avail-
able to clinicians are not always clear. To this end, the objec-
tive of our studies was to evaluate bone regeneration using
commercially available scaffolds containing DBM or β-TCP
when combined with either BMA or concentrated BMA
(cBMA).

Materials and methods

Experimental animals

This study was conducted in compliance with the Animal
Welfare Act, implementing animal welfare regulations, and
in accordance with the principles of the Guide for the Care
and Use of Laboratory Animals. All animal procedures per-
formed in this study were approved by the Institutional Ani-
mal Care and Use Committee at the US Army Institute of
Surgical Research. Adult, female New Zealand white rabbits
(∼4 kg) were housed in a vivarium accredited by the Associ-
ation for Assessment and Accreditation of Laboratory Animal
Care International. A total of 40 surgical animals were used
for this study, ten animals per group (n=10/group).

Bone marrow aspiration and concentration

BMA was collected in syringes containing anticoagulant
(ACD- A, Anticoagulant Citrate Dextrose, Arteriocyte
Medical Systems, Hopkinton, MA, USA) after access to the
bone marrow compartment of the tibia and iliac crests of do-
nor animals while under anaesthesia, similar to that described
previously [16]. The ratio of ACD-A to aspirate was 1:6.5; a
total volume of 29.98 ml±1.64 of ACD-A:aspirate was col-
lected per animal. After the pooling and filtration of aspirates
from two animals an aliquot of BMA (3 ml) was set aside for
cell analysis and scaffold loading, and the remainder was used
to generate cBMA using the Magellan® MAR01™
(Arteriocyte Medical Systems, Hopkinton, MA, USA) system
as per the manufacturer’s instructions. cBMA was also sub-
jected to cell analyses and used to load scaffolds. Each batch
of BMA or cBMA was used to load both a DBM and

collagen-β-TCP (Col:β-TCP) scaffold to control for donor
variability.

BMA and cBMA analyses

An aliquot of BMA or cBMA (∼1 ml) was subjected to red
blood cell lysis using 2 % acetic acid in water and the nucle-
ated cells counted manually using a haemocytometer. The fi-
broblast colony-forming unit (CFU-F) assay was used as an
indicator of progenitor cell content in BMA and cBMA, sim-
ilar to that described previously [17]. A total of 4×105 nucle-
ated cells were plated per well of a six-well plate in triplicate in
media consisting of α-Minimum Essential Media, 10 % fetal
bovine serum and 1 % penicillin/streptomycin in a humidified
incubator (5 % CO2, 37 ° C). Forty-eight hours after seeding
media was changed, and media was changed every other day
thereafter for 10 days. Cells were then washed with phosphate-
buffered saline (PBS) and fixed with a 1:1 mixture of
acetone:methanol for ten minutes at room temperature. The
plates were allowed to air dry and stained with Giemsa to
allow for counting of cell colonies. The CFU-F quantification
was performed by an independent, blinded reviewer. An ali-
quot of each sample was also used for complete blood count
analyses for haematocrit and platelet quantification.

Graft preparation

DBM grafts: Rabbit DBM powder (MAROMatch™,
ArteriocyteMedical Systems, Hopkinton,MA, USA)was thor-
oughly rehydrated with either BMAor cBMA and a poloxamer
reverse phase medium formulated into a gel-like form
(MAROFuse™, Arteriocyte Medical Systems, Hopkinton,
MA, USA) in a 1:1:1 ratio (1 cc MAROMatch™+1 cc
MAROFuse™+1 cc BMA or cBMA). The preparation time
for DBM grafts with BMA or cBMAwas approximately five
minutes. DBM grafts were then incubated for ten minutes prior
to implantation at room temperature.

Col:β-TCP grafts: Col:-β-TCP composite scaffolds (Integra
LifeSciences, Plainsboro, NJ, USA) were pre-cut to approxi-
mately 15 mm, placed in a 30-cc syringe joined by a stopcock
to another syringe containing either 1 cc BMA or cBMA. The
scaffolds were loaded with either BMA or cBMA by passing
the aspirate through the syringes under negative pressure. Each
graft material was incubated in either BMA or cBMA for ten
minutes prior to implantation at room temperature.

Surgical procedures

After a ∼40-mm incision over the mid-diaphysis of the radius,
a 15-mm segment was removed using an oscillating bone saw
with a copious amount of saline irrigation resulting in a
critical-sized defect similar to previously described [16]. The
segmental defect was then replaced with either (1) DBM+
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BMA (DBM-BMA), (2) DBM+cBMA (DBM-cBMA), (3)
Col:-β-TCP+BMA (Col:β-TCP-BMA) or (4) Col:-β-TCP+
cBMA (Col:β-TCP-cBMA) and the soft tissue layers and skin
were both closed with 4–0 Vicryl (Ethicon, Somerville, NJ,
USA). Due to the radioulnar syndesmosis that forms the fi-
brous joint between the radius and the ulna, additional fixation
of the defect was not required.

Radiographic analysis

Radiographs were taken immediately and four and
eight weeks after surgery (MX-20 X-ray machine, Faxitron
Corporation, Tucson, AZ, USA). Each radiograph was taken
with an exposure time of 15 seconds and a tube voltage of 35
kVp. Radiographs were scored for bone formation and bridg-
ing by five blinded observers (including an orthopaedic sur-
geon) as described by Bodde et al. [18] using the scoring
system presented in Supplemental Table 1.

Histological examination

A subset of samples (n=5/group) was prepared for histologi-
cal analyses. Each specimen was dehydrated in a graded series
of alcohols and embedded in polymethyl methacrylate with-
out decalcification. Specimens (5 mm) were sectioned along
the vertical axis in the middle of the defect site, stained with
modified Gomori’s trichrome and scanned using a
NanoZoomer Digital Pathology System. The histology slides
were used to measure new bone formation using the ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

Statistical analysis

SigmaPlot© 12.5 (Systat Software, San Jose, CA, USA) was
used to run Student’s t tests, Mann–Whitney or analysis of
variance tests with Tukey’s comparison analysis when appro-
priate to determine differences. Statistical significance was
determined when p<0.05.
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Fig. 1 BMA or cBMAwere
analysed for a CFUs/well, b
representative CFU staining, c
CFUs/ml, d the number of
nucleated cells/ml, e platelets/ml
or f per cent haematocrit. Box
plots show the range andmean for
each assay. Cross denotes the
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Results

Cell analyses

The number of CFU-Fs/well was significantly higher in
cBMA than BMA (27.22±3.30 vs 7.67±1.14, respectively;
p<0.001) (Fig. 1a, b). The number of CFU-Fs/ml was also
significantly higher in cBMA than BMA (1,900.18±3.30 vs
244.31±33.89, respectively; p<0.001) (Fig. 1c). One outlier
in the cBMA platelet sample was 2.8 standard deviations from
the mean and was therefore excluded from the statistical anal-
yses. The number of nucleated cells per millilitre within
cBMAwas significantly higher than BMA (28.20±6.75×106

vs 13.06±0.74×106, respectively; p<0.05) (Fig. 1d). The
number of platelets per millilitre was increased from 25.53±
3.35×106 for BMA to 48.11±10.04×106 for cBMA (p<0.01)
(Fig. 1e). The per cent haematocrit was decreased from 30.78
±0.55 % for BMA to 11.84±2.14 % for cBMA (p<0.001)
(Fig. 1f).

Animal surgeries

A 15-mm segment was removed from the mid-diaphysis of
the radius and replaced with either DBM-BMA, DBM-
cBMA, Col:β-TCP-BMA or Col:β-TCP-cBMA (Fig. 2a).
No surgical complications, adverse inflammatory response,
infection, fractures or graft rejections were observed.

Radiographic analyses

At the time of surgery Col:β-TCP could be observed; however,
those treated with DBM appeared empty, as the demineralised
tissue cannot be detected using radiographs (Fig. 2b). Despite
the presence of residual Col:β-TCP, there appeared to be more
bone in the DBM group at four and eight weeks, which were
evaluated using a standard scoring system [18]. Defects treated
with DBM-BMA received a score of 3.62±0.10 and 3.7±
0.10 at eight weeks for bone formation (Fig. 3a) and bridging
(Fig. 3b), respectively. All defects (10/10) had a score≥3 for
both analyses. DBM-cBMA-treated defects received a score of
3.48±0.22 and 3.26±0.29 at eight weeks bone formation
(Fig. 3a) and bridging (Fig. 3b), respectively. At eight weeks
nine of ten and eight of ten defects treated with DBM-cBMA
received a score≥3 for bone formation and bridging by
eight weeks, respectively. None of the defects that were treated
with Col:β-TCP-BMA achieved a score≥3 for bone formation
or defect bridging by eight weeks; average values for the group
were 1.56±0.15 and 0.84±0.15, respectively. Defects treated
with Col:β-TCP-cBMA achieved a score≥3 in four of ten and
two of ten animals at eight weeks for bone bridging and for-
mation; average values for the group were 2.54±0.29 and 2.16
±0.37, respectively. Within Col:β-TCP, but not DBM, there
was a main effect of aspirate type for both bone formation

and bridging (cBMA>BMA; p<0.05). Within DBM, but not
Col:β-TCP, there was an increase in both bone formation and
bridging between four and eight weeks (p<0.05). A summary
of the average and individual radiograph scores are found in
Supplemental Table 2.

Histological examination

Histology sections (Fig. 4a–d) were used to quantify new
bone formation within the area of the defect in a subset of
samples (n=5/group). The results showed a significant in-
crease in per cent bone in the DBM group as compared to
Col:β-TCP (0.331 vs 0.229; p<0.05); however, no differ-
ences were seen between the BMA and the cBMA groups
(0.289 vs 0.272; p>0.05).

Discussion

The primary objective of this study was to identify clinically
relevant strategies capable of enhancing bone repair. Grafts
were prepared using currently available scaffolds composed
of materials that have been well studied, namely DBM and
β-TCP, and supplemented with either BMA or cBMA. The
major findings of the study are that (1) DBM grafts were
capable of achieving union by four weeks post-surgery, re-
gardless of whether BMA or cBMA were used, and (2) the
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Fig. 2 a Photographs of Col:-β-TCP or DBM scaffolds that were loaded
with either BMA or cBMA placed in a 15-mm rabbit radial defect. b
Representative radiographs of radial segmental defects implanted with
Col:β-TCP or DBM scaffolds containing BMA or cBMA at the time of
surgery (day 0), 4 or 8 weeks after surgery
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supplementation of Col:β-TCP composite grafts with cBMA
improved bone healing as compared to those supplemented
with BMA.

At first glance a logical speculation is that the differences in
bone repair may be attributed to the main component (i.e.
DBMorCol:β-TCP) containedwithin each scaffold, especial-
ly since both types of scaffolds were loaded from the same
batches of BMA or cBMA. DBM has been shown to be
osteoinductive because it retains measurable levels of bone
morphogenetic protein (BMP) and drives stem cell differenti-
ation and new bone formation [19–22]. β-TCP is an
osteoconductive material [23] that supports new bone deposi-
tion but does not drive cellular differentiation. However, it is
also important to take into account the differences in the de-
livery strategy for each material; Col:β-TCP composite grafts
were delivered as strips that were cut to match the defect,
while DBM was delivered in a putty form. Future studies that
include a direct comparison between β-TCP and DBM using
the same form of delivery will be useful to better understand
critical parameters for bone repair.

The importance of delivering a sufficient number of pro-
genitor cells to improve bone healing [17] provided the ratio-
nale for concentrating the BMA. In line with previous studies,

the concentration of nucleated cells, CFU-Fs and platelets
increased∼2-, 3.5- and 2-fold with bone marrow concentra-
tion, respectively, so that a greater number of progenitor cells
and platelets were delivered. The absolute values we observed
for these parameters within BMA or cBMA are in general
agreement with previously published work where rabbits
[24], pigs [15] or humans [8] were used. Since the DBM grafts
performed well regardless of whether BMA or cBMA were
included, it was not possible to glean any additional informa-
tion regarding the progenitor cell delivery within DBM. How-
ever, the finding that Col:β-TCP was improved with the
use of cBMA allows for further speculation. A Pearson
correlation test comparing the number of CFUs/well or
CFUs/ml to bone formation within the Col:β-TCP dem-
onstrated a significant correlation (p<0.01) with R2

values of 0.50 and 0.36, respectively (data not shown).
Due to the small sample size it is difficult to effectively
determine the minimum number of progenitor cells re-
quired to heal this type of defect. Nonetheless, it sug-
gests a relationship between the number of progenitor
cells delivered and defect healing may exist under these
circumstances, but may require a more challenging os-
teogenic model to fully elucidate.
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Based on these findings, further evaluation of both scaf-
folds under conditions that may be more challenging and rel-
evant to traumatic injuries is of great interest. This is especial-
ly relevant for better evaluating the importance of progenitor
cells with DBM. One would expect the augmentation with
cells to play a greater role in bone healing if the availability
of stem cells and osteogenic growth factors in a defect is low.
As just one example, poor fracture healing occurs when there
is little soft tissue coverage and a subsequently lesser number
of factors available for bone repair [25, 26]. Nonetheless, a
conservative estimation based on our findings is that DBM
grafts are capable of accelerating bone healing in this model
where there is ample soft tissue coverage. Further, our find-
ings are largely based on radiographic analyses using a
standardised scoring method. It will be useful to follow up
these semi-quantitative analyses with micro-CT, however, this
comparison is complicated by the fact that residual β-TCP is
difficult to distinguish from regenerated bone.

An obvious limitation to the study is that a group without
BMA was not included therefore a definitive conclusion re-
garding the importance of BMA cannot be made. The goal of
the study was to identify strategies currently available to ex-
pedite clinical translation. Since previous studies have already
documented reduced healing in this model using similar scaf-
folds without augmentation [27–29], a control group contain-
ing either no scaffold or scaffolds without cells was not in-
cluded to minimise animal use. Overall, based on the relative
ease at which bone marrow aspiration can be obtained the
cost/risk seems to favour its inclusion.

Many studies are directed towards maximising the regen-
erative potential of various combinations of biomaterials and
stem cells while few experimental studies include both clini-
cally relevant scaffolds and rapid cell isolation procedures.
The ability of DBM grafts to achieve union by four weeks
when supplemented with BMA suggests that this is one strat-
egy available to clinicians for the treatment of difficult defects.
Also, the current findings suggest that either material can be
combined with cBMA to effectively heal bone.
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